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Autonomous oscillators, such as clocks and lasers, produce periodic signals without any external
frequency reference. In order to sustain stable periodic motion, there needs to be an external energy supply
as well as nonlinearity built into the oscillator to regulate the amplitude. Usually, nonlinearity is provided
by the sustaining feedback mechanism, which also supplies energy, whereas the constituent resonator that
determines the output frequency stays linear. Here, we propose a new self-sustaining scheme that relies on
the nonlinearity originating from the resonator itself to limit the oscillation amplitude, while the feedback
remains linear. We introduce a model for describing the working principle of the self-sustained oscillations
and validate it with experiments performed on a nonlinear microelectromechanical oscillator.
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Autonomous oscillators are systems that can spontane-
ously commence and maintain stable periodic signals in a
self-sustained manner without external frequency references.
They are abundant both in nature and in man-made devices.
In nature made systems, the self-sustained oscillators are the
fundamental piece that describes systems as diverse as
neurons, cardiac tissue, and predator-prey relationships [1].
In man-made devices, self-sustained autonomous oscillators
are overwhelmingly used for communications, timing, com-
putation, and sensing [2], with examples such as quartz
watches [3] and laser sources [4]. A typical oscillator consists
of a resonating component anda sustaining feedback element:
the constituent resonator determines theoscillation frequency,
whereas the feedback system draws power from an external
source to compensate for the energy loss due to damping
during each oscillation of the resonator [5]. In order to initiate
the oscillations, the initial gain of the feedbackmust be larger
than unity, so that energy accumulates to build up oscillation
amplitude [6]. However, to avoid ever increasing oscillations,
some limiting mechanism must act to ensure that, eventually,
the vibrational amplitude no longer grows.
In the conventional designs of oscillators, the resonating

element is operated in the linear regime, where its resonant
frequency is independent of the excitation levels, and
the necessary amplitude limiting mechanism is enacted
in the feedback loop by introducing a nonlinear element
[Fig. 1(a)]. However, maintaining the resonating element in
the linear regime has been challenging for a variety of
applications requiring self-sustained oscillators made from
micro- or nanoelectromechanical (M/NEMS) resonators
[7–9], mostly because these resonators exhibit significantly
reduced linear dynamic range. To limit the amplitude,
common mechanisms include impulsive energy replenish-
ment [5], saturated gain medium [4,10] or amplifiers
[11,12], automatic level control [13,14], phase locked

loops [15,16], nonlinear signal transduction [17], and
dedicated nonlinear components [18]. These mechanisms
for incorporating nonlinear elements into the electronic
feedback circuitry introduce technical challenges in the
analysis, design, and implementation of the oscillators due
to the significant impedance mismatch between CMOS
drivers and M/NEMS resonators [19].
In this Letter, we introduce and analyze a new oscillator

architecture that solely relies on the nonlinearity originating
from a micromechanical resonator, while all components
of the feedback circuitry stay within the linear regime
[Fig. 1(b)]. By capitalizing on the intrinsic nonlinear dynam-
ics of the mechanical resonator, it is possible to considerably
simplify the design of the oscillator while achieving a large
degree of control and tunability. Unlike the techniques used
with linear resonators, the oscillator architecture we are
proposing can be readily implemented in practically all
M/NEMSgeometries, as the only requirement is the existence
of a nonlinear response. The proposed innovative architecture
permits us to (1) initiate the oscillation spontaneously,
(2) achieve stable oscillations through the interplay between
elastic nonlinearities and viscous damping, and (3) tune the
oscillation frequency over a wide range with readily acces-
sible system parameters. We demonstrate this new architec-
ture with an oscillator consisting of a clamped-clamped
silicon MEMS resonator [16] with a high quality factor
(Q≳ 105), and with frequency tunability as large as 19%.
We treat the mechanical resonator as a generic single

degree-of-freedom oscillating element whose departure from
equilibrium is described by a coordinate xðtÞ obeying [20]

mẍþ ðγ þ ~ηx2Þ_xþmω2
0xþ ~βx3 ¼ Fðx; _xÞ; ð1Þ

where m is the effective mass, γ and ~η are the linear and
nonlinear damping coefficients [21,22], ω0 is the natural
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frequency of the linear oscillation, ~β is the cubic (Duffing)
nonlinear coefficient, and Fðx; _xÞ is the driving force from
feedback. Since we only focus on periodic solutions, quad-
ratic nonlinearities are ignored. To facilitate the analysis, we
define ϵq−1 ¼ γ=mω0, η ¼ ~η=4γ, β ¼ 3~β=4mω2

0, and a fast
time scale τ ¼ ω0t. Here, the small expansion parameter ϵ is
introduced for treatment within a perturbation theory, as
shown below. Since the feedback force, F, is only needed to
compensate for the dissipation, it will also be of the order of ϵ.
Furthermore, we treat the feedback force as proportional to
the vibrational amplitude, corresponding to the cases where
the vibrational amplitude is linearly transduced and directly
measured experimentally. Similarly, the feedback force can

be treated as proportional to the vibrational velocity if the
velocity is the observed quantity, as in the case of capacitive
motion transduction [23]. For simplicity, herewe consider the
case of linear amplitude amplification and scale the feedback
force asF ¼ ϵmω2

0gxΔ,where g is the feedbackgain andxΔ is
the oscillation coordinate shifted in phase by the feedback
loop phase delay Δ. With these definitions, Eq. (1) becomes

ẍþ ϵq−1ð1þ 4ηx2Þ_xþ xþ 4

3
βx3 ¼ ϵgxΔ: ð2Þ

Here, the time derivatives are calculated with respect to τ.
We represent the limit of small dissipation by taking

ϵ ≪ 1, and the scaled quality factor q of the order of unity.
The solution to Eq. (2) can be found through perturbation
theory [26]. However, in contrast to previous treatments
with weak nonlinearity [20], we do not assume that the
cubic force is small compared to the linear term [27]. The
resulting zeroth-order equation is therefore the nonlinear
Duffing equation without damping: ẍ0 þ x0 þ 4

3
βx30 ¼ 0.

We propose a steady-state solution of the form x0 ¼
A0 cosΩ0τ, where A0 and Ω0 are the oscillation amplitude
and the frequency of the zeroth-order solution, respectively.
By neglecting higher-harmonics contributions, we find that
A0 and Ω0 must satisfy the relation

1 − Ω2
0 þ βA2

0 ¼ 0: ð3Þ

Following the method of multiple time scales [23,26], we
proceed to obtain the steady-state solution to Eq. (2) up to
OðϵÞ. This solution will be characterized by amplitude A
and frequency ω, determined by both intrinsic properties
(β, η, q) and extrinsic parametersΔ, g [23]. Figures 1(c) and
1(d) illustrate the relation between the steady-state ampli-
tude A and the frequency ω for different values of feedback
excitations and Δ. For small excitations [Fig. 1(c)], we
recover the resonance curve as obtained for weakly non-
linear resonators [20]. For large excitation [Fig. 1(d)],
where the oscillation frequency is pulled far away from
the linear resonance (ω − 1 ≫ ϵ), the perturbed solution is
practically identical to that of the zeroth-order equation (3).
It is worth noting that, in the case of our autonomous
oscillator, both the amplitude A and the frequency ω are
functions of the phase delay Δ. Therefore, if multiple
solutions of A exist for a given value of ω, all of them are
stable [23,28], as opposed to an externally driven resonator
where only two solutions are stable. Moreover, nonlinear-
ities make it possible to achieve frequencies far above the
linear oscillation frequency, only bounded by other non-
linearities present in the system, or by physical limits of the
device.
For hardening nonlinearity (β > 0), closer inspection of

the full solution reveals that the zero-amplitude state for our
system is unstable, as indicated by the phase portrait shown
in Fig. 1(e): any disturbance will push the oscillator away
from rest state towards the stable equilibrium Aeq, marked by

(a) (b)

(c) (d)

(e) (f)

Amplitude, A

FIG. 1. (a) Schematics of the conventional oscillator design,
consisting of a linear resonator and nonlinear feedback. The
output of the resonator is first amplified and then amplitude
limited before being fed back to the resonator. (b) Schematics of
an oscillator design with a nonlinear resonator and a linear
feedback loop. The output of the resonator is amplified and phase
shifted, then reinjected to the resonator. (c) Vibrational amplitude
A (expressed as the ratio to the critical amplitude Ac, above which
multiple solutions exist) versus frequency detuning in the limit of
a small drive, derived from Eq. (2), with ϵ ¼ 10−5, β ¼ 1, η ¼ 0,
and different levels of excitation. The dashed backbone curve
shows the solution to Eq. (3). (d) The same results but with large
excitation, where the full solution practically coincides with the
backbone. (e) Phase portrait of amplitude A, showing unstable
rest states and different stable equilibria, Aeq, at various Δ’s.
(f) Simulated transient responses of A at different Δ’s.
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the arrows in Fig. 1(e). Physically, this stable equilibrium can
be understood as the energy balance between driving and
damping: if the amplitude A increases suddenly around Aeq

(for instance, by noise) due to the proportionality between
the forcing and the amplitude, there is a growth in the input
energy. At the same time, because of the hardening non-
linearity, the increased amplitude pushes the oscillation
frequency ω upward, resulting in a larger energy dissipation
due to viscous damping, which is proportional to the product
of Aω. The energy balance is thus restored, and the
oscillation amplitude achieves a steady state [Fig. 1(f)]. A
symmetric argument holds if the amplitude decreases. We
have also examined the case where the feedback force is
proportional to the velocity, and we arrived at a similar
conclusion [23]. In this case, however, the balance is
maintained by the effects of nonlinear damping, which
becomes stronger as the oscillation amplitude grows. This
energy balance highlights the key difference with previous
oscillator topologies with a dedicated amplitude limiting
element [12,16,18]. In the current setup, intrinsic non-
linearities are an indispensable ingredient for stabilization.
Additionally, the spontaneous oscillation greatly simplifies
the start-up protocol of the oscillator, making it highly
suitable for M/NEMS based oscillators, where very sensitive
transducers are required for initiating the motion.
We used a MEMS based oscillator to experimentally

demonstrate these concepts. The resonator, similar to the
one used in Ref. [16], is placed in a vacuum chamber and
actuated electrostatically. The mechanical vibration creates
a capacitive current in the sensing comb that is proportional
to the velocity. Both of the comb electrodes consist of 25
interdigitated fingers that allow for efficient excitation and
linear signal transduction. The measured linear resonance is
61.57 kHz, with a linear damping rate of 0.51 Hz [23]. The
small dissipation of ϵ−1 ¼ Q ∼ 120000 ensures that the
resonator is well suited for the designed nonlinear oscil-
lator. In this case, the nonlinearity is geometrical in origin
and arises from the elongation of the beam during large
transverse vibration. The onset of nonlinearity xc—above
which the amplitude-frequency relation bifurcates—is cal-
culated to be 17 nm from the geometry of the device [8],
and it is experimentally found to be about 10 nm [23]. In
the experiments, we have observed oscillation amplitudes
larger than 1 μm, well above the linear threshold. We find
excitations larger than 100 μV are enough to drive the
resonator into the nonlinear regime. When the resonator is
excited with an even larger force, it displays the signature
of nonlinear damping [20,23,29,30].
The feedback loop consists of a transimpedance ampli-

fier followed by a voltage amplifier and a bandpass filter.
Therefore, the feedback force is proportional to the velocity
with a certain phase delay. In order to ensure the linearity of
the feedback loop, we have calibrated the linearity of each
component in the feedback circuity, and we found all of
them operating in the linear regime [23]. Operating the

electronics in the linear regime provides a large range of
operational voltages that allows for significant detuning of
the MEMS oscillator. Additionally, eliminating complex
controlling circuits for oscillators [31] greatly reduces the
number of elements in the feedback loop, lowering the
power consumption [32].
Figure 2(a) shows the steady-state power spectrum of the

oscillation, measured at different phase delays Δ. For
Δ < 20°, no oscillation is observed, whereas for
Δ > 20°, the oscillations occur and the frequency grows
monotonically with Δ. This is consistent with the fact that,
in order to initiate spontaneous oscillations, the feedback
force should overcome damping. The onset of the oscil-
lation frequency is about 61.5 kHz, slightly above the linear
resonance, and the highest oscillation frequency observed
is 73.15 kHz, which is about 19% above the linear
resonance. We are hindered by the instrumental limit from
achieving larger phase delay and frequency detuning. The
acquisition time of each spectrum is much longer than the
transient time of the oscillation, to ensure steady-state
conditions. The oscillation amplitude versus frequency
[Fig. 2(b)] clearly shows a quasi-square-root dependency,
as predicted by Eq. (3). The scaled Duffing nonlinearity β,
obtained from a fitting to Eq. (3), is 1.15 × 1011 m−2, in
good agreement with previous results [33].
Next, we consider the buildup of the oscillation. The

spontaneous initiation of the oscillating motion with linear
feedback does not require the prerequisite of the
Barkhausen criterion [18]: after the amplified and phase-
shifted signal is fed back to actuate the resonator, the
system will asymptotically transition to the stable limit
cycle, whose frequency can be controlled by g and Δ [23].
Figure 3 shows the temporal evolution of the oscillator
during the start-up: after the feedback is engaged at t ¼ 0 s,
the envelope of the oscillation amplitude, A, grows rapidly
towards the final value [Fig. 3(a)]. The steady-state
response displays stable sinusoidal oscillation, as shown
in Fig. 3(b). The temporal frequency evolution shows a
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FIG. 2. Steady-state response of a nonlinear oscillator. (a) Mea-
sured power spectrum of the oscillation with different feedback–
phase delay Δ. Measurement at each Δ is performed with a time
constant long enough to ensure that the transient response has
died out. The dc bias is 7 V. (b) Extracted steady-state oscillation
amplitude and frequency (the red circles), and a fitting to Eq. (3),
with β ¼ 1.15 × 1011 m−2.
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similar pattern [Fig. 3(c), corresponding to the time domain
data shown in Fig. 3(a)]: the instantaneous frequency starts
at the linear resonant frequency value, and shifts upward
towards the steady-state oscillation frequency. This tem-
poral evolution is shown on the amplitude-frequency plane
[Fig. 3(d)], where we plot the amplitude-frequency of the
oscillator every 80 ms. It can be clearly seen that the
temporal response of the oscillator follows the prescribed
square-root interdependence, Eq. (3), with an extracted
β ¼ 1.05 × 1011 m−2. The interdependence between the
vibrational amplitude and the frequency underlines the
working principle of the stable oscillation: any uninten-
tional increase in amplitude will increase the resonant
frequency of the resonator, which leads to more viscous
damping, which in turn reduces the amplitude, hence
keeping the oscillations stable.
Finally, we will examine the influence of the system

parameters on the oscillation buildup. We define the start-
up time, tstart-up, as the time needed for the oscillation
amplitude to reach 90% of its steady-state value. We find
that tstart-up drops considerably with an increase in the phase
delay Δ [Figs. 4(a) and 4(c)], which is consistent with the
theoretical modeling, considering that the feedback force is
proportional to g and Δ [23]. Additionally, we also modify
the effective gain g by changing the dc bias and observe a
similar dependence of tstart-up [23].

To validate the model against intrinsic properties of the
resonator, we deliberately tune the linear damping rate γ by
increasing the pressure of the vacuum chamber, which
changes the quality factor Q. The values of Q are obtained
from separated open-loop resonator-type measurements
[23]. The start-up time increases drastically when Q drops
below ∼30000 [Figs. 4(b) and 4(d)], and we failed to
observe any oscillation for Q < 10000.
Since the only requirement for this oscillator topology to

work is to have the resonator in the nonlinear regime, self-
sustained oscillations can be achieved at low values ofQ by
changing the dimensions of the resonator. The onset of
nonlinearity scales with the characteristic length of the
resonating element and, for NEMS devices, even forces
from thermal noise can drive the resonator into the non-
linear regime [34].
The start-up time, obtained from different system configu-

rations, is shown in Fig. 4(e) and is found to be approximately
inversely proportional to the steady-state frequency offset.
This observation highlights another benefit of the new top-
ology: the more nonlinear the response is, the shorter the

start-up

Oscillation frequency

(a) (b)

(c) (d)

FIG. 3. Transient response during start-up. (a) Measured am-
plitude during oscillation buildup. The steady-state oscillation
frequency is 61.7 kHz, with Δ ¼ 24.1°. (b) Zoomed-in view of
the steady-state oscillation of (a). The x axis is shifted arbitrarily.
(c) Temporal frequency response of the oscillation. The power
spectrum at each nominal time ti is obtained by performing a
nonoverlapping fast Fourier transform of the time domain data in
a narrow window around ti. (d) The temporal evolution of the
oscillator on the amplitude-frequency plane, and a fitting to
Eq. (3) (the black solid line). The extracted β is 1.05 × 1011 m−2.
The dc bias is 7 V for all of the data shown.
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FIG. 4. Control of the oscillation start-up. (a) Envelope of the
amplitude during start-up, for different Δ’s, with Q ¼ 120000.
The envelope is obtained through averaging multiple cycles of the
oscillation around given times. (b) Envelope of the amplitude
during start-up, for different Q’s, with Δ ¼ 27°. (c),(d) Corre-
sponding start-up time tstart-up and steady-state frequency ex-
tracted from (a) and (b), respectively. (e) The start-up time tstart-up
versus the steady-state frequency offset, collected with different
start-up conditions. The dashed line is a guide for the eye with a
slope of −1.
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start-up time. The nonlinear mechanical resonator ensures
stable oscillation,whose frequency offset is proportional to the
total feedback gain, whereas the linear feedback allows for an
exponentially fast transient towards the stable oscillation,
which results in a shorter start-up time with a larger gain.
In summary, we have introduced a novel oscillator

architecture consisting of a nonlinear mechanical resonator
driven by a linear feedback loop. We have theoretically
examined the conditions for stable periodic motion and
have shown that when the feedback forcing is proportional
to the vibration amplitude, a hardening nonlinear response
ensures the balance between the external energy input and
the intrinsic dissipation necessary to stabilize the oscilla-
tions. The interplay between the resonator’s frequency
dependent amplitude and the associated damping under-
lines the principle of stable oscillations. When the feedback
forcing is proportional to the oscillation velocity, the
balance is, in turn, guaranteed by nonlinear damping.
As the size of the resonating elements shrinks towards

the nanoscale, the critical amplitudes for the onset of
nonlinearity decreases accordingly [8,35] and the resona-
tors will inevitably operate in the mechanical nonlinear
regime, even merely driven by thermal noise [34]. Since the
mechanical nonlinearities of the resonator are responsible
for achieving self-sustained oscillations, the new architec-
ture should perform better when scaled down to the
nanoscale [36], making it ideal for oscillators incorporating
nanoscale resonators and for very large-scale integration of
high-Q MEMS and NEMS devices.
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